Comparison of NZ’s Energy Efficiency Regulation and Verification Assumptions to Real Building Loads and Operation
نویسندگان
چکیده
The New Zealand building design industry assumes various building model inputs for the consumption of energy through lighting and appliances. It also makes assumptions regarding when these energy consumers are considered to be “turned on”. This paper aims to better inform industry energy modellers about the real load and operation of real commercial buildings in New Zealand when compared to New Zealand Standard energy efficiency requirements and assumptions. The paper presents a set of New Zealand relevant commercial building operation information. Typical operation information is provided for three commercial building types: (1) Office; (2) Retail; and (3) Mixed/Other. The information provides low, typical, and high installed building load and operation pattern scenarios for the three building types. The typical data presented in this paper is significantly different to the load requirement and operation modelling assumptions presented in the New Zealand Building code. The results established in this paper are informed by data gathered in the Building Research Association of New Zealand (BRANZ) Building Energy End-Use Study (BEES). The purpose of BEES is to increase knowledge on energy use patterns for the entire New Zealand building stock. The intention of this paper is to disseminate the established knowledge that will eventually update the assumptions used in New Zealand commercial energy models. OPEN ACCESS Buildings 2015, 5 117
منابع مشابه
بهینهسازی مصرف انرژی در یک ساختمان اداری مجهز به سیستم مدیریت هوشمند
Office buildings in the construction sector are the largest consumer of energy. So providing solutions for energy efficiency, improving performance and correcting the operation pattern can reduce energy consumption and improve occupants comfort in these buildings. Using Design builder and CFD simulation software and recording devices, the study has analyzed the environment quality parameters (t...
متن کاملReal -Time Pricing Design Considering Uncertainty of Renewable Energy Resources and Thermal Loads in Smart Grids
In this paper, a novel real time pricing design is presented for Demand Response (DR) programs. A Load Serving Entity (LSE) is responsible to provide energy for flexible loads, inflexible loads and thermal loads. The LSE consider operation conditions of system and uncertainty of renewable energy resources and it designs a Real Time Price (RTP) demand response. The inflexible and thermal loads c...
متن کاملNet zero energy buildings in semi-arid climates: An analysis on 3 case studies in Tehran, Iran
This paper analyzes utilization of renewable energy systems and efficient building envelopes in the semi-arid climate. The proposed model evaluates renewable energy systems solutions as well as economic- and energy-efficient construction materials for the net zero-energy buildings (NZEB) in semi-arid climates. The objective of this paper is to optimize total energy cost and environmental impact...
متن کاملOperation of multi Carrier microgrid (MCMG) considering demand response
: In this paper, the operation of a future distribution network is discussed under the assumption of a multi-carrier microgrid (MCMG) concept. The new model considers a modern energy management technique in electricity and natural gas networks based on a novel demand side management (DSM) which the energy tariff for responsive loads are correlated to the energy input of the network and changes ...
متن کاملOptimization the Efficiency of Gas Turbines for Air Pollution Reduction
Increasing concerns about energy and emissions from fuel consumption in gas turbines has attracted many researchers to protect the environment and reduce pollutants in the world. The main objective of this paper is to investigate the increasing efficiency of three-stroke gas turbine operation based on the technical analysis of the operation of three-axis gas turbine cycles with non-design condi...
متن کامل